Estimation of Summations

2025-08-25

1nk=1nn1/k\frac{1}{n} \sum^n_{k=1} n^{1/k}

By plotting, you can find that the 1nk=1k1/k\frac{1}{n} \sum^\infty_{k=1} k^{1/k} finnally goes to 11, because {k1/k}1\{k^{1/k}\} \to 1, from which the average goes to 11 by Cesaro-Stolz lemma.
Now replacing this sum by 1nk=1n1/k\frac{1}{n} \sum^\infty_{k=1} n^{1/k}, it helps to estimate the new summation by splitting the sum into two pieces.

The summation is

n+n1/2+n1/3+n1/n.n + n^{1/2} + n^{1/3} + \ldots n^{1/n}. The first ln(n)\ln(n) terms can be estimated by summing n\sqrt n.

Why would the upper bound n1/knn^{1/k} \leq \sqrt n for the first ln(n)\ln(n) work?? The reason is that we know the sum 2k<lnnn1/kln(n)n=o(n)\sum_{2 \leq k < \ln n} n^{1/k} \leq \ln(n) \sqrt n = o(n), and so this upper bound is sufficient.

Now we estimate lnnknn1/k\sum_{\ln n \leq k \leq n} n^{1/k}.

Inequality

The first inequality to use is elnn/klnnk+1e^{\ln n /k} \leq \frac{\ln n}{k} + 1 for klnnk\geq \ln n. (ex<3ex<3x+1e^x < 3 \implies e^x < 3x +1 for x[0,1]x\in [0,1])

Also, for k2k \geq 2,1/k=k1k1kdt<k1k1tdt1/k = \int^{k}_{k-1} \frac{1}{k} dt <\int^{k}_{k-1} \frac{1}{t} dt

So k=2n1/k<k=2nk1k1tdt=1n1tdt=lnn\sum^n_{k=2} 1/k < \sum^n_{k=2} \int^k_{k-1} \frac{1}{t}dt = \int^n_{1} \frac{1}{t}dt =\ln n \tag{1}

Concluding Estimate

lnn<knn1/k=lnn<knelnn/k<3lnn(k=2n1k)+n<3lnnlnn+n=o(n)+n\sum_{\ln n < k \leq n} n^{1/k} = \sum_{\ln n < k \leq n} e^{\ln n/k} < 3 \ln n \left(\sum^n_{k=2} \frac{1}{k}\right) + n< 3\ln n \ln n + n = o(n) + n